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Viscous oscillations of a supported drop in an 
immiscible fluid 
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(Received 2 June 1986 and in revised form 21 May 1987) 

The small-amplitude free vibrations of a spherical drop immersed in an outer 
immiscible fluid and in partial contact with a solid support are considered when both 
fluids are assumed to be viscous and incompressible, while gravity effects are 
neglected. Using the normal-mode decomposition and the Green-function method, 
the solution of the linearized Navier-Stokes equations is reduced to the solution of 
an eigenvalue problem. The model includes as particular cases the viscous model for 
a free drop proposed by Prosperetti (1980) and the inviscid model for a supported 
drop previously proposed by the authors. 

The influence of the viscosity and of the support size are analysed both for the 
bubble and for the drop. At large values of the viscosity, the free drop shows 
significant differences with respect to the unsupported drop and a singular behaviour 
of the eigenvalue problem as the support size tends to zero. 

The comparison with the available experimental data shows a quite satisfactory 
agreement for both the vibration frequency and the damping constant, provided 
that the support angle is not too large. 

1. Introduction 
The study of drop vibrations in a zero-gravity environment is relevant to the 

technology of crystal growth in space laboratories. This led to the selection of the 
drop-vibration problem as one of the experiments to be performed during the 
Spacelab 1 flight in 1984. The experiment, named ES326, was carried out within the 
Physics of Fluids Modulus by the astronauts Merbolt and Lichtenberger who 
observed the resonance frequencies and the decay of vibrations for drops of various 
sizes supported on a solid disk. The results of this experiment, which have been 
described in detail by Rodot & Bisch (1984), compared favourably with those 
obtained from simulations on Earth using the Plateau technique of two immiscible 
fluids having equal density (Bisch, Lasek & Rodot 1982). 

Beside the Earth and space experimental investigations, the drop-vibration 
problem can also be studied on a theoretical basis. However the existing 
investigations on the vibrations of drops immersed in an outer fluid (e.g. Miller & 
Scriven 1968; Prosperetti 1980; Marston 1980; Tsamopoulos & Brown 1983) are not 
suitable for crystal-growth problems where the drop cannot be considered to be 
isolated. A more appropriate model is the one adopted in the experimental 
investigation by Bisch et al. (1982) who modelled the crystallizing liquid as a drop 
lying on a plane solid support that represents the crystallized substratum. A slightly 
different model in which the plane support was substituted by a spherical bowl has 
been assumed by the authors in a previous study concerned with the inviscid 
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problem (Strani & Sabetta 1984). The spherical-support assumption, although 
clearly convenient for the mathematical modelling of the problem, is more restrictive 
than the flat support assumption since it requires the drop radius to be exactly the 
same as the bowl radius. However some ad hoc experimental investigations kindly 
performed by Dr C. Bisch have shown a negligible influence of the support shape on 
the vibration-frequency values. Using a spherical and a cylindrical support with the 
same support angle @o (see figure I ) ,  exactly the same value of the first vibration 
frequency has been obtained for values of ~ , ,  up to 90". For larger values of the 
support angle (k0 = 127" and 156") the vibration frequency using the spherical 
support was 10% larger than that measured with the plane support. Since support 
angles larger than 90" are not of practical interest and since the spherical shape is 
clearly convenient for the mathematical treatment of the problem, the spherical 
support will also be adopted in the present model. 

In their study of the inviscid problem Strani & Sabetta (1984) showed that the 
effect of the support is to raise considerably the values of the resonance frequencies. 
Moreover for the supported drop a new lower-frequency free mode was observed, 
which reduces to a zero-frequency rigid displacement in the case of a free drop. In the 
above-mentioned work a comparison between the theoretical and the experimental 
data obtained by Bisch et al. (1982) was also presented, showing a quite good 
qualitative agreement. However the computed values of the frequencies were larger 
by about 20% than the experimental ones. 

The aim of the present work is to investigate if these differences were due to the 
inviscid assumption, looking for a solution of the supported-drop problem when both 
the internal and external fluid are considered to be viscous. Moreover the present 
model allows the determination on a theoretical basis of the decay of the drop 
vibrations. 

In  $2, using the normal-mode decomposition proposed by Miller & Scriven (1968) 
and Prosperetti (1980) for a free viscous drop, and the results obtained by Strani & 
Sabetta (1984) for an inviscid supported drop, the solution of the linearized Navier- 
Stokes equations is reduced to the solution of a characteristic value problem, which 
is very similar to the eigenvalue problem except that the coefficient matrix depends 
on the eigenvalue itself. The behaviour of the solution in the limiting cases of zero 
viscosity and the absence of the support is considered in $3. 

In 94, the numerical method of solution of the eigenvalue problem is described, and 
a first set of results is presented for the case of a bubble and a drop. These results, 
when compared with those for the free drop, show an interesting singular behaviour 
of the eigenvalue problem as the support angle goes to zero. 

Finally in 95 our numerical results are compared with the experimental ones 
obtained by various authors from simulations on Earth and with those obtained 
during the Spacelab 1 flight in 1984. 

2. The mathematical model 
2.1. Formulation of the problem 

We consider the small-amplitude free vibrations of a spherical drop, partially 
supported by a bowl (figure l ) ,  immersed in an immiscible fluid. Both the internal 
and the external fluid are assumed to be viscous and incompressible, while gravity 
effects are neglected. When a spherical polar coordinate system ( r ,B,  q5) is adopted, 
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I 

FIGURE 1.  Definition sketch. 

and only symmetrical deformations of the drop with respect to the y-axis are 
considered, the velocity and vorticity flow field may be written as: 

where nr,n,,nq are the unit vectors of the coordinate system. Here and in what 
follows the quantities pertaining to the internal or external fluid are denoted by the 
superscripts i and 0, respectively. The absence of the superscript indicates that  a 
statement is applicable to both fluids. 

For all the quantities, a time dependence is assumed of the type 

F ( r ,  8,  t )  = f ( r ,  8 )  e-yt, 

where f and y are complex numbers. The eigenvalue spectrum for the present 
problem is characterized by the conditions 

Re(y) 2 0, (4a) 

Im ( y )  2 0, (4b) 
where (4a) is induced on physical grounds while (4b) follows from the symmetry of 
the spectrum with respect to the real axis. It should be pointed out that  we do not 
consider the continuous spectrum that may be obtained when the values of y are 
assumed to be purely real, as shown by Prosperetti (1980). 

In  the above-mentioned hypotheses, both the flow fields defined on the domains 
gi = ( ( r ,  8 ) :  0 < r < R, 0 < 0 < x )  and 9' EE ( ( r ,  8): R < r < o 0 , O  < 8 < x )  may be 
described by the set of linearized Navier-Stokes equations 

v * v  = 0, ( 5 )  

p y o = p V x V x o ,  (6a )  
O = V X V  

associated with the following set of boundary conditions 
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(i) continuity of normal and tangential velocity on the whole drop surface 

17) 

(8) 

vi(R,8)  = v; (R,8)  = - yz (8 ) ,  

vb(R, 8)  = v w ,  O), 

where z ( 8 )  is the surface displacement with respect to the unperturbed, spherical 
shape ; 

(ii) Continuity of tangential stresses and balance of the normal momentum on the 
free portion of the drop surface 0 < 8 < 8, 

S:,(R, 8 )  = f$'O(R, 8),  (9) 

Sf,(R,O)-S;,(R,8) = CT , (10) 

where 

(iii) no-slip condition 
drop surface 8, d 8 d x 

Moreover the following 
volume 

s,, = -p+2pvr, ,;  

and no radial deformation on the supported portion of the 

vs(R, 6) = 0, (11)  

z(e) = 0. (12) 

integral condition expresses the conservation of the drop 

z sinOd8 = 0. 

In the above equations p and p are the density and the coefficient of viscosity of the 
fluids, CT is the surface tension, R the unperturbed drop radius and 8, = 7t - ko where 
k0 is the support angle (see figure 1).  Boundedness of velocity and pressure a t  the 
origin and at  infinity is also required. 

Equations (5)-(13) determine an eigenvalue problem which is reduced, in the 
following, to a simpler form in order to allow for the use of an efficient approximate 
numerical method of solution. 

2.2 .  The solution for inner and outer flow Jields 

Use is made here of the standard (Morse & Beshbach 1953) decomposition of a 
solenoidal vector w ,  

w = V x ( B + V x C )  with B=Bn,,  C=Cn,, (14) 

previously used by Miller & Scriven (1968) and Propseretti (1980) for the case of a 
free drop. 

Since we only consider axisymmetric vibrations, it follows that C = 0, B = B(r, 0 )  n, 
and, consequently, 

v = B+V# with # = # ( r , O ) .  

The substitution of (15) into (6u)  gives the following differential equation for the 
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which admits separable solution in the form 

Bn = gn+z[ I r (P,,)"] - Pn(x) ( n = 0 , 1 , 2  ,... ). 

Here x = cos 8, B,+; is a particular solution of the Bessel equation of semi-integer 
order, and P,(x) is the Legendre polynomial of order n. Since (Pn(z)) is a basis for 
L,[ - 1,1] and the boundary conditions are given on spherical boundaries we may 
assume the following formal representation for the solution of (16) : 

where rig O = r[(p-y/,u)i,o]i, J,,; and Hi,;  are respectively Bessel and Hankel functions 
of first kind and semi-integer order and C:' are constants. The particular choice of 
the Bessel functions for the inner and outer solution is due to the required 
boundedness condition on the velocity for r+O and r + co. The n = 0 term is not 
considered in the expressions since its curl would be identically zero. 

The differential equation for the scalar potential @ is obtained by substituting (15) 
into ( 5 ) :  

1 1 1 
-(r2$,A,'+$(1 r2  -x2)$,zl,z = -$w,'. (18) 

m 
Introducing the expansion 

$( r ,  x) = X $n(Z) pn(x)> (19) 

on account of (17) and of the boundedness conditions for r + 0 and r + co, it  is found 
n-0 

) ( [ sn+lTO,(s)ds)r-(n+l), (21) 
2n+ 1 

s-"TO,(s)ds rn+ Pn-- 

where Ti(s )  = T:(s) = 0 and a,,p, are constants. 
Finally for the drop shape we assume the expansion 

m 

~ ( 2 )  = C znPn(x), 
n-1 

where the zeroth-order term has been dropped on account of (13). The boundary 
conditions (7 ) ,  (8), (9) and ( 1 1 )  may now be used to express the unknown quantities 
Ci,C:,a,,P,, as functions of the coefficients z,. 

Since the conditions (7) and (8) are identical with the ones to be used in the absence 
of the solid support, the quantities p,, Ci,  CO,, have the same expressions as 
previously obtained by Prosperetti (1980). These expressions, as functions of a, and 
z,, are listed in the Appendix. The boundary conditions (9) and (11) determine a 
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linear relationship between the vectors (a,) and (zn,)  which may be written in the 
form 

The algebraic details to obtain the expressions of the coefficients B, are also given 
in the Appendix. 

All the constants needed to determine the inner and outer bulk flow field are now 
expressed in terms of a. and of the set (z,), n = 1 ,2 ,  .... The difference between thc 
normal stresses at the drop surface is then given, up to a constant @"--pi), by 

where p* is a reference density. 

2.3. The eigenvalue problem 

As shown by the authors for the case of the inviscid drop (Strani & Sabetta 1984), 
using the Green-function method, the surface deformation may be obtained in the 
form 

4x) = 1;' Q(x,  Y ) f ( Y )  dY. (26) 

The algebraic details on the Green-function evaluation are given in the above- 
mentioned paper and the only difference is that  the function f (y) is now given by 

However if we replace the constant a. by a new constant 

using (23), the function f (y) may be expressed exactly in the same form as obtained 
for the inviscid case, i.e. 

where r( y, 7) is now defined as 
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Following the procedure used in the paper by Strani & Sabetta (1984), it  is then 
possible to evaluate the constant $o and to finally get the solution in the form 

where K,, is now given by 

and 

I m 

In the following we shall refer to A as the eigenvalue of the problem even if, in the 
usual sense, the eigenvalue would be A' = - l / A 2 .  

The main difference with respect to the inviscid case is that the matrix K,, is now 
a function of the eigenvalue itself. The problem is therefore slightly different and 
more complicated than the classical eigenvalue problem. Beside the dependence on 
the non-dimensional eigenvalue A, it is easily recognized that the matrix K,, depends 
on the support parameter a = cos Oo,  on the non-dimensional densities and viscosities 
pi/p*,po/p*,pi/p*,po/p*, (with p* a reference viscosity) and on a non-dimensional 
viscosity parameter ..* 

3. Limit cases of the inviscid drop and of the free drop 
For completeness we now discuss some asymptotic forms of (31). 
On account of the following expansions for large values of the argument : 

$,+(z) = - iz + . . . as Iz( + co, 

the reader may easily verify that, in the limit of small viscosities the inviscid case 
previously treated by Strani & Sabetta (1984) is recovered since A,+O, Z,+O,  
B,, + - S,, and 

Khl + ( T - ' l h )  GhO 
(r+x). Pi/ P * Po/ P * 

The viscous case of the free drop (Prosperetti 1980) is analogously found by taking 
the limit of (7)  for a+-1.  In fact, when a + -  1 

while (Strani & Sabetta 1984) 
26il 2Sik ( -  1)*-+- 
3 2k+l  

, ( i , k )  * (191)  
(2i+ 1)  (2k+ 1 )  

4 2 - k ( k + l )  
lim Gtk = 
a+-1 

and G,, diverges as In (1 +a) .  
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The matrix K,, has an 'arrow shaped' structure, i.e. 

lim K,, = co, 
a+-1 

lim K,, $. 0, 

lim K,, =l= 0, 

lim K,, = 0, 

I =i= 1 

h =k 1 

h + I, 

a+-1 

a+-l 

h, I =I= 1 
a+-1 ' (34) 

Therefore in the limit case of a free drop the eigenvalues and eigenvectors have the 
following asymptotic behaviour : 

As for the inviscid supported drop the existence of a first eigenmode which tends to 
a rigid displacement for a+- 1 is demonstrated: furthermore (35b)  is identical with 
the nonlinear equation used by Prosperetti for the determination of A" when n =k 1. 

4. Numerical solution of the eigenvalue problem 
The eigenvalue problem (31) may be numerically solved, as is usually done, by 

truncating the expansions to N terms (typical values used in the calculations were 
N = 10,20,30), and finding the roots of the characteristic equation 

det - U, +K,(A, e, a )  = 0 ,  (36) [n'. 1 
where U, is the identity N x N matrix, KN is the N x N truncation of the infinite 
matrix K,, in (31), and the non-dimensional values of densities and viscosities are 
assumed to be given. The nonlinear eigenvalue problem (36) has been solved 
iteratively by a Newton-Ralphson procedure. The solution is very sensitive to the 
initial guess of the value A n ( € )  and it may often occur that the solution diverges or 
converges to an eigenvalue different from the one sought (i.e. with different n).  To 
avoid this difficulty the value An(co-Ae)  was used as initial guess to compute 
An(eo).  Starting from e = 0 where the eigenvalues are known (Strani & Sabetta 1984) 
and successively increasing e by small steps Ae, the whole function A"(€)  has been 
built up. For the larger values of c where IdA/dsl is greater, we could avoid the use 
of very small values of Ae by giving to  A(€,)  an initial approximate value obtained 
with a linear extrapolation from the values a t  (eo-Ac) and at (eo-2Ae). 
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FIGURE 2. ( a )  First and (b) second eigenvalue h = b+iw versus E for the bubble (p’ = pi = 0) 
and different support angles +o. Truncation N = 10. 

4.1. The bubble Lp’ = pi = 01 : numerical results 

Plots versus E of the real and imaginary part ( A  = b + iw) of the first two eigenvalues 
are given in figure 2. It is seen that both the damping and the frequency of the 
oscillations increase with the angle of support, without modifications of their 
qualitative dependence on the viscosity. Decreasing y?,, for a given e, the eigenvalues 
regularly approach the values predicted by the theory for y?o = 0. 

4.2. The drop [p” = po = 01 : numerical results 

Figure 3 shows the plot versus e of the real and imaginary part of the first and second 
eigenvalue. As for the bubble case, an increase of b and w with the support angle may 
be observed in the range of low e-values. However for large values of E ,  the second 
eigenvalue shows an irregular behaviour which is particularly evident for small 
values of the support angle. Moreover the solution for y?o = 0.1 looks quite different 
from that for the unsupported drop, despite the fact that the latter is the limit of the 
solution as y?,, tends to zero (see $3). 
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FIGURE 3. (a )  First and ( b )  second eigenvalue h = b+iw versus E ,  for the drop (po = po = 0) and 
different support angles ~,,. Truncation N = 10. 

Before discussing this behaviour i t  is worth remembering that for the free drop the 
eigenmodes coincide with the Legendre polynomials and may then be identified by 
a number which is equal both to the order of the polynomial and to the number of 
nodes of the free-surface shape. For the supported drop we may still identify an 
eigenmode by the node number, but the same eigenmode, which is now a combination 
of different Legendre polynomials, may correspond to different positions of the 
nodes, depending on the relative weight of the Legendre polynomials. 

In  order to gain a better insight into the behaviour of the supported drop it is 
helpful to examine the complete picture of the roots of the characteristic equation, 
which is shown in figure 4 for the case of $o = 0.1 and a truncation number N = 10. 
From the analysis of this figure we may point out the following unexpected 
features : 

(i) For the second eigenvalue the bifurcation point (point A in figure 4) has moved 
further with respect to the position of the bifurcation point for @, = 0.1 (point A in 
figure 3). Moreover while in the latter case the bifurcation gives rise to two purely 
real branches, both corresponding to a second eigenmode, the lower of the two 
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FIGURE 4. Roots A = b+iw of the characteristic equation for $,, = 0.1 and truncation N = 10: 
-, w + 0;  . . . . . . , w = 0. The ordinal number marked near each branch indicates the type of the 
corresponding eigenmode. 

branches issuing from point A corresponds to a tenth eigenmode, i.e. to the highest 
mode that can be represented with N = 10. It should also be observed that point D 
in figure h ( a ) ,  even if quite similar to point A ,  is not a bifurcation point, since the 
two crossing lines have different imaginary parts. 

(ii) Along the purely real branches of the solution the mode number varies as 
'shown in figure 4 ( a ) ,  i.e. in different ranges of E the same real eigenvalue corresponds 
to different modes. 

(iii) Both the real and the imaginary part of the second eigenvalue show some 
wiggles. The wiggles tend to disappear for the higher eigenvalues and for larger 
support angles. 

All these features could suggest the occurrence of spurious solutions due to the finite 
truncation. To ascertain if this was the cause, an analysis of the influence of the 
truncation number on the second eigenvalue has been performed. 
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FIGUKE 5 .  Influence of the truncation number N on the eigenvalue corresponding to a second 
mode for the drop. The= real parts of the eigenvalues are not plotted. (a)  @o = 0.1, (6) 0.5. 

As shown in figure 5 ( a ) ,  if we increase the truncation number from N = 5 up to 
N = 10, the bifurcation point moves from e = 0.89 to E = 1.065. The comparison of 
the two solutions also shows that below a certain critical value e* 0.78 only a slight 
increase in the accuracy is obtained with N = 10, while for e > e* the two solutions 
are drastically different. A further increase in N (from 10 to 20) causes the bifurcation 
point to move even farther and the critical value to increase up to E* x 0.94. An 
analogous behaviour could be observed for the real part of the solution. For instance 
with N = 20 a plot of the solution, like that of figure 4 ( a ) ,  would show the following 
modifications: the bifurcation points A, B, C would move to larger e- and b-values 
and the solid lines would extend farther (approximately along the dashed lines) ; new 
dotted lines corresponding to eigenmodes larger than the 10th would appear in the 
upper part of the diagram ; the solution would be modified only in the neighbourhood 
of points A, B, C while the lower part of the diagram would remain substantially 
unchanged. 

Prom the above analysis we may draw the following conclusions: 
(a) The appearance of points like A, B, C in figure 4 does not correspond to actual 

bifurcations but is caused by the finite truncation. 
( b )  For each eigenvalue and each value of the truncation number, a converged 

solutioh can be obtained only for e-values below a critical value c*. To extend the 
solution above this value a larger N is needed. 

( c )  In  the limit h' + 00 the solution does not have the bifurcation points that exist 
for @ = 0 but it is made up of two infinite sets of branches both extending in the 
whole range 0 < e < co. The first set is constituted by branches with w =+= 0 and 
db/de 3 0 along which the mode number is constant (solid lines in figure 4a) ;  the 
second set is constituted by purely real branches with dbldc < 0 (dotted lines in 
figure 4a) along which an iterated transition from an nth mode to an (n- 1)th mode 
is observed. 

The way by which the transition occurs is illustrated in figure 6 for the 
neighbourhood of point I) of figure 4(a). The result seems to indicate that the non- 
oscillating way by which a perturbed drop may come back to its spherical shape is 
different according to the viscosity variation during this process. If the viscosity is 
kept constant, only the perturbation amplitude will gradually be reduced and the 
shape will remain the same. On the other hand if the viscosity is increased during the 
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process, the surface shape will become gradually smoother with a reduction in the 
number of the nodes. This behaviour, whose experimental validation would be 
valuable, is strictly connected with the presence of the support. In fact for the 
supported drop, an eigenmode is a combination of different Legendre polynomials 
having as weight the eigenvector components. Since the ratio of these components is 
affected by the viscosity, it is not surprising that an eigenvalue could correspond to 
different modes as the viscosity is changed. 

Coming now to the problem of the wiggles, figure 5 shows that when N is increased 
from 10 to 20 the wiggle amplitude is strengthened instead of smoothed and that for 
N = 30 the wiggles seem to converge to a shape independent ofN. We are therefore 
led to  deduce that the wiggles are not due to  the finite truncation, even if we are not 
able to  give a physical interpretation of these oscillations. It is however possible to 
gain a better insight into the origin and the successive disappearance of the wiggles 
as $, is increased, through a comparison between the cases $o = 0 and $, = 

(figure 7).  
For $, = 0 and, say, the second eigenvalue the complex solution bifurcates a t  

point A into two purely real branches. The intersection of these branches with the 
decreasing purely real branches corresponding to higher modes gives rise to other 
bifurcation points like B, C, D in figure 7. 
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The corresponding plot for $,, = lop6, even if very close to the one for $,, = 0, 
appears to be quite different and more complicated. 

The three-dimensional plot of figure 8 qualitatively illustrates the way by which 
the transition occurs between $o = 0 (figure 8 a )  and $,, = (figure 8 d ) .  As soon 
as k0 > 0, the bifurcation point B disappears in the simple way shown in figure 8 ( b ) ,  
while the point C splits up into two bifurcation points C' and C", which are connected 
by a complex branch. Further increases in 9, cause the pointsA and C' first to 
coalesce (figure 8 c )  and then to disappear (figure 8 d ) ,  giving rise to a 'wiggle'. As 

is increased further, the wiggle becomes gradually smoother and finally vanishes. 
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In the same way we may observe the coalescence and then disappearance of points 
C"-D', D"-E' and so on for all the other bifurcation points. 

The wiggles are thus seen to be intimately connected with the fact that all 
bifurcation points in the plot for $o = 0 must disappear when $o is increased and 
indicate a singular behaviour of the eigenvalue problem as the perturbation (a+ 1)  
tends to zero. 

5. Comparison with experimental data 
We have summarized in table 1 the physical parameters characterizing the various 

sets of experimental data concerning both the frequencies (sets 1 , 2 , 4 , 5 ,  10) and the 
damping constants (sets 3, 6, 7,  8, 9, 10). With the exception of set 10, which reports 
the data obtained in the Spacelab, all other results have been obtained in a 
laboratory simulation of the zero-gravity environment, using the Plateau technique 
of two immiscible fluids having equal density. Moreover sets 1, 2 and 3 are concerned 
with the small-amplitude vibrations of a free drop and therefore report data of the 
frequencies for n 2 2 and of the damping constant for n = 2 .  On the other hand the 
remaining sets are concerned with the finite-amplitude vibrations of a supported 
drop and report results of the frequency and of the damping constant for n = 1. 

The 110 different experimental conditions have been simulated using the present 
numerical model and the computed values are compared in figure 9 with the 
corresponding experimental values. The latters have been expressed in non- 
dimensional form through the relations 

where Fn is the frequency in Hz of the nth vibration mode and 7, is the corresponding 
decay time. The reference values ,LA* = lop2 g/cm s, and p* = pi g/cm3 have been 
assumed. 

The comparisons of figure9 indicates an overall agreement, measured by the 
scatter from the 45" line, but also some significant differences between the 
experimental and computed values. A discussion of these differences is given in the 
following through the analysis of the influence of the various physical parameters. 

5.1. Frequency 
Viscosity dependence 

As shown by Strani & Sabetta (1984), the non-viscous model slightly overpredicts 
the value of the fundamental vibration frequency (n = 1) in the range of small 
support angles. To evaluate the influence of the viscosity we have computed the 
frequency for the 28 test conditions of set 4 having yFo < 35". For the actual values 
of the parameter E ,  which varies from one test to another ranging from 3 x lop3 to 
lov2, we obtained a reduction of the frequency of about 6% with respect to the 
inviscid case. The agreement with the experimental data is therefore slightly 
improved and the difference between the computed and experimental values always 
lies within f 10 %. 

For larger values of the support angle the influence of the viscosity becomes 
progressively smaller. The weak influence of the viscosity on the vibration frequency 
confirms the observation of Bisch et al. (1982) who claimed that, for viscosities in the 
range of practical interest, the frequency is almost independent of the viscosity 
values of both the internal and the external fluid. 
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0 

FIGURE 9. Comparison between experimental and computed eigenvalues. h = b + iw. 0 ,  Trinh 
et al. (1982) ; + , Bisch et al. (1982) ; 0, Spacelab experiment, Rodot & Bisch (1984). 

Support-angle dependence 
The experimental values ofthe fundamental frequency over the whole range of the 

support angle are plotted in figure 10 and compared with the computed values for 
E = 0 and for c = 0.5 x lo-', which represents an average ofthe test values. While the 
agreement is quite satisfactory for small support angles, both the inviscid and the 
viscous models overpredict the vibration frequency by almost 30% a t  @,, = 90" and 
by 80 % a t  @o = 150". This increasing disagreement as the support angle is increased 
may be connected with the nonlinear effects that are not taken into account in the 
model but that affect the experimental results by lowering the frequencies of the free 
modes as indicated by theoretical (Tsamopoulos & Brown 1983) and experimental 
(Trinh & Wang 1982) investigations. In  fact, while for a free drop the vibration 
amplitude is characterized by the ratio between the pole displacement H and the 
drop radius, for a supported drop the significant parameter should be the ratio 
between H and a length characterizing the free portion of the drop, e.g. R(x - 1cr0).  
Therefore it is clear that for the same values ofH (as was the case in the experiments) 

14-2 
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Experimental 
n 0 , L  w: Present model set 1 

2 2.19 2.12 2.12 2.46 
3 4.14 4.00 3.99 4.49 
4 6.32 6.09 6.07 6.48 
5 8.73 8.51 8.36 9.06 

TABLE 2. Comparison of calculated and experimental values of the frequency of 
free-drop oscillations 

the nonlinear effects become more and more important as @,, is increased. This 
interpretation of the disagreement for large support angles should however be 
supported by further ad hoc experimental investigations. 

Higher-order modes 

The only available results for n > 1 are those obtained for the free drop by Trinh, 
Zwern & Wang (1982). These results are compared in table 2 with the present model 
and with the non-dimensional frequencies for an inviscid free drop (Lamb 1932) 

n(n+ 1 )  (n- 1 )  ( n + 2 )  f 

[ 2 n + i  I. WnL = 

Table 2 also reports the values w,* given by the expression 

which takes into account a viscous correction. Here 8, in the case pi = po, has the 
expression 

The computed values underpredict by 6 YO-13 YO the experimental ones, while they 
are almost coincident with the values of w,*. However the fact that the experimental 
values are larger than Lamb’s values, while the effect of viscosity is to lower the 
frequency values, seems to indicate that, in the present case, the differences between 
predicted and experimental values should be attributed to the uncertainty in the 
evaluation of the physical parameters (particularly the surface tension) and to the 
fact that a statically distorted drop (as it was in the above experiments) always has 
a resonance frequency larger than that for a spherical drop (Trinh et al. 1982). 

5.2. Damping constant 
Viscosity dependence 

The influence of varying the viscosity of the inner fluid, all other parameters 
remaining constant, is shown in figure 11 for the case of a free drop. The agreement 
between the experimental damping constant and the model predictions is quite 
satisfactory. It may be observed that the agreement is much better than that 
indicated by Prosperetti (1980), who obtained differences between the observed and 
calculated decay times up to 150%. 

Support -angl e dependence 

The lack of a set of experimental data in which only the support angle was varied, 
made i t  impossible a test of the model reliability over a wide range of $,,. However 
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FIGURE 12. Influence on the damping constant of the support angle (n = 1 ) .  
-, E = 0.39 x lo-*; 0, Bisch et al. (1982). 

the few available data with constant e compare favourably with the model 
predictions as shown in figure 12. The comparison for other combinations of the 
physical parameters and for values of 9, up to 50" also shows that the agreement 
between experimental and computed values, of the damping constant is better than 
that for the vibration frequency a t  large values of the support angle. 

This behaviour is confirmed by the comparison shown in table 3 between the 
model predictions and the results obtained during the Spacelab 1 mission (Rodot & 
Bisch 1984). 
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"1 b, 
- $0 R 

degrees cm comp. exp. comp. exp. 

33.8 1.35 1.60 1.35 0.013 0.013 
38.7 1.18 1.74 1.49 0.017 0.020 
41.8 1.13 1.85 1.49 0.019 0.023 
61.9 0.85 2.62 1.92 0.042 0.033 

TABLE 3. Comparison between model predictions and the results of Rodot & Bisch (1984) 

6. Conclusions 
The model presented in this paper includes as particular cases the viscous model 

for a free drop proposed by Prosperetti (1980) and the inviscid model for a supported 
drop proposed by the authors (Strani & Sabetta 1984). The complexity and the 
computational effort of the model are not much larger than that of those mentioned 
above. 

The model reliability is quite satisfactory for the prediction of both the vibration 
frequency and the damping constant, provided that the fundamental hypothesis of 
small-amplitude vibrations is satisfied. 

The observed disagreement with experimental data for large values of the drop 
support angle is assumed to be due to the experimental large amplitude of the drop- 
pole displacement with respect to the free portion of the surface of the drop. 

The authors wish to  thank Professor G. M. Homsy for his suggestion of the 
solution of W. D. Collins of the dual series problem. 

Professor Massimo Strani died before his time on September 12, 1986. The co- 
author wishes to remember the invaluable contribution of Massimo to the present 
work as well as to the understanding and the solution of a great deal of other fluid- 
dynamic problems. His death leaves a great gap among all his friends. 

Appendix 
The expressions for the constants Pn, C; and Cg resulting from boundary 

conditions (7) and (8), are listed below (refer to the work of Prosperetti 1980 for a 
discussion and the algebraic details) : 
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Here 

are quotients of Bessel and Hankel functions. 

the boundary conditions (9) and ( l l ) ,  on account of (17), (20)  and (A 1) may be 
written as 

d 
d0 

d 
d0 

(ks;o-ks;@),r-R = ( 1  - x 2 ) h z  = --[u(cos8)], 

- (i-&)bz = --[w(cos8)1, ( 4 l r - R  = ( m 1 r - R  - 

0 
& 

A ,  = 
1 + p / p i  ' 

2 k + 3  
x k = - ( k ~ l ) ( - l ) k + l A , + l R k f l a , + l ,  H ,  =-(l+-). ( A 5 )  

Ak+l 

Differentiability term by term has been assumed, and account has been taken of the 
identity 

(A 6) 
d (k + 1)  (k + 2 )  T&(cos $) = - --P,+,( cos $), 

dll/ 

where TL:,(cos $) are associated Legendre functions of degree 1 + k and order - 1. 
The form (A 4 )  is a particular case of the dual series problem considered by Collins 
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(1961), whose solution is here synthetically recalled. The unknown coefficients xk ,  
solutions of (A 4), are found to be given by 

xk = 2-1{ /o'oI(v) tan@) sec(jv)[(k+l) s in((k+2)v)+(k+2) sin((k+l)v)]dv 

1 = ~ ( k  + 1 )  (k + 2) [ /o'o I (  V )  Ri+k( V )  dv + lo @( V ,  V )  R;+k( V )  dv 

The function G(v ,  O-) is defined by 

cot (jx) sin x dx 
G ( v ,  O-) = - 1 > O d v G a ,  

(cos v - cos X ) Z  2n: 

while I(v) must be found as a solution of the Fredholdm integral equation of the 
second kind 

K,(v, p )  tan ( jp )  I @ )  dp 

(A 9) 
the Kernel K, (u ,p )  being given by 

with 
2-t sin ( ( k +  1) v) sin ((k+2) v) 

( k  + 2) 
R;+,(v) = - see (jv) tan (tv) + x 

The solution given by Collins is valid provided that H ,  is O(k-') for large k. 

If account is taken of the asymptotic expansions of the Bessel and Hankel functions 
for large order it is easily verified that 

from which the necessary condition on H ,  immediately follows. 
Since (A 4) is a linear problem, the solution xk may be expressed as 

m 

xk = c x r ( z m + l  Ry) ( - i ) m + l ,  
m=o 

where x r ( k  = 0,1,2, ...) is the solution of (A 4) when 

f($) = - (m+ 1 ) K ; l ( c O s $ ) >  

d$') = Z,+,(m+ 1) T2t,(cos $). 
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For this case we have 

419 

and 
T;!+,(cos x) cot (ix) sin x dX 

2R (cos v - cos x)i 
cot ( 4 ~ )  sin x dx - G ( v ,  g) = - 1 -  2R (cos v - cos x ) T  

To evaluate the integrals we make use of the results (Collins 1961) 

tan(ix)T;:m(cosX)dX - R:+,(v) = - - - 
(cos x - cos v) i  

from which it follows that 

and 

F(v )  = -(m+ 1 )  cot ($v)R:+,(v), 

- - z m + ,  

2 k ( m  + 2) 

whose integration, under the condition G(A,R) = 0, results in 

If we define 

we have ZF = n ( k + l )  ( k + 2 ) ( a p + b r ) ,  

with b,” = lo G(v ,  v) R:+,(v) dv = -Tkm) 
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while the multiplication of (A 9) by R:+,(v)/tan (tv) and its integration between 0 and 
@ o ,  gives the infinite set of linear equations in the unknowns ap, k = 0,1 ,2 ,  ... : 
m 

C (Skn+7c(n f2 )  ( n + l ) H n T k n ) u r  
n-o 

Setting 

we get the formal solution of (A 15) 

This leads to the linear relation between the vectors {a,} and {x,}  

where I 

The inverse matrix C;: may be obtained by truncating to N terms and making use 
of standard matrix inversion codes. 
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